Electrical Engineering BSEE / Machine Learning Engineering MSMLE

Major: Electrical Engineering and Machine Learning Engineering 
Degree Awarded: Bachelor of Science in Electrical Engineering (BSEE) and Master of Science in Machine Learning Engineering (MSMLE)
Calendar Type: Quarter
Minimum Required Credits: 226.5
Co-op Options: Three Co-ops (Five years)
BS Classification of Instructional Programs (CIP) code: 14.1001
BS Standard Occupational Classification (SOC) code: 17-2071
MS Classification of Instructional Programs (CIP) code: 14.0903
MS Standard Occupational Classification (SOC) code: 15-1132

About the Program

Electrical engineers contribute to industry and research in diverse areas such as electronic circuits, lasers and photonics, semiconductor devices, computer and communication networks, wireless networks, biomedical engineering, bioinformatics, machine learning, automation and control, and power and energy systems. The undergraduate electrical engineering major emphasizes the fundamentals of electrical engineering, hands-on learning, and flexibility in course selection to satisfy diverse career goals. Students choose one or more areas of study beginning in their third year.

The MS in Machine Learning is designed to provide students with a strong academic background in machine learning and prepare them for a career as a machine learning engineer or similar position. Using a curriculum based on core machine learning topics, aligned mathematical theory, and signal processing, this graduate program provides a solid mathematical and theoretical understanding of how machine learning algorithms are designed, implemented, and applied to practical problems. Students will gain the ability to implement machine learning systems using standard programming languages, software frameworks, and systems both as an individual and as a member of a development team.

For more information, visit COE Special Programs or the BS/MS webpage.
 

Admission Requirements

Students must demonstrate a readiness for graduate work, both in terms of academic performance and relevant preparatory undergraduate courses. Required are a cumulative GPA of 3.3 and completion of 80.0 credits, with a minimum grade of B in the following courses: ECE 105, ECE 200, ECE 201, ENGR 231, and ENGR 232.

Degree Requirements

BSEE Degree Requirements
General Education/Liberal Studies Requirements
CIVC 101Introduction to Civic Engagement1.0
COOP 101Career Management and Professional Development *1.0
ENGL 101Composition and Rhetoric I: Inquiry and Exploratory Research3.0
or ENGL 111 English Composition I
ENGL 102Composition and Rhetoric II: Advanced Research and Evidence-Based Writing3.0
or ENGL 112 English Composition II
ENGL 103Composition and Rhetoric III: Themes and Genres3.0
or ENGL 113 English Composition III
PHIL 315Engineering Ethics3.0
UNIV E101The Drexel Experience1.0
Communications Elective3.0
Techniques of Speaking
Technical Communication
General Education Courses **15.0
Foundation Requirements
CHEM 101General Chemistry I3.5
ENGR 111Introduction to Engineering Design & Data Analysis3.0
ENGR 113First-Year Engineering Design3.0
ENGR 131Introductory Programming for Engineers3.0
or ENGR 132 Programming for Engineers
ENGR 231Linear Engineering Systems3.0
ENGR 232Dynamic Engineering Systems3.0
MATH 121Calculus I4.0
MATH 122Calculus II4.0
MATH 200Multivariate Calculus4.0
MATH 221Discrete Mathematics3.0
MATH 291Complex and Vector Analysis for Engineers4.0
PHYS 101Fundamentals of Physics I4.0
PHYS 102Fundamentals of Physics II4.0
PHYS 201Fundamentals of Physics III4.0
Science Elective3.0
Any BIO, CHEM or PHYS course
Professional Requirements
ECE 101Electrical and Computer Engineering in the Real World1.0
ECE 105Programming for Engineers II3.0
ECE 200Digital Logic Design4.0
ECE 201Foundations of Electric Circuits I4.0
ECE 301Foundations of Electric Circuits II4.0
ECE 303ECE Laboratory3.0
ECE 361Probability and Data Analytics for Engineers4.0
ECE 370Electronic Devices3.0
ECE 371Foundations of Electromagnetics for Computing & Wireless Systems3.0
ECE 380Fundamentals of Power and Energy3.0
ECEC 201Advanced Programming for Engineers3.0
ECEC 204Design with Microcontrollers3.0
ECES 301Signals and Systems I4.0
Senior Design ***
ECE 491 [WI] Senior Design Project I3.0
ECE 492 [WI] Senior Design Project II3.0
ECE 493 [WI] Senior Design Project III3.0
EE Core Elective (Choose one of the following):3.0
Data Structures
Advanced Programming Tools and Techniques
Introduction to Computer Organization
ECE Electives 6.0
ECE 400-level Electives ††9.0
Free Electives27.0
Master's Degree Courses
Core Courses
ECE 610Machine Learning & Artificial Intelligence3.0
ECE 612Applied Machine Learning Engineering3.0
ECE 687Pattern Recognition3.0
ECES 521Probability & Random Variables3.0
Aligned Mathematical Theory6.0
Choose 2 courses
Random Process & Spectral Analysis
Detection & Estimation Theory
Optimization Methods for Engineering Design
Information Theory and Coding
Linear Algebra & Matrix Analysis
Applied Probability and Statistics I
Signal Processing3.0
Choose 1 course
Fundamentals of Deterministic Digital Signal Processing
Fundamentals of Computer Vision
Fundamentals of Image Processing
Applications3.0
Choose 1 course
Cell & Tissue Image Analysis
Multimedia Forensics and Security
Bioinformatics
Statistical Analysis of Genomics
Machine Listening and Music IR
Engineering Electives 9.0
Choose any 3 graduate-level courses from the College of Engineering
Transformational Electives6.0
Choose 2 elective courses that promote the development of leadership, communications, and ethics
Theories of Communication and Persuasion
Culture, Society & Education in Comparative Perspective
Education for Global Citizenship, Sustainability, and Social Justice
Mastery (Thesis and Non-Thesis Option) ‡‡6.0
Master's Thesis
Total Credits226.5
*

Co-op cycles may vary. Students are assigned a co-op cycle (fall/winter, spring/summer, summer-only) based on their co-op program (4-year, 5-year) and major.

COOP 101 registration is determined by the co-op cycle assigned and may be scheduled in a different term. Select students may be eligible to take COOP 001 in place of COOP 101.

**

 General Education Courses

***

Students who choose the Master's Thesis instead of Senior Design must replace ECE 491 [WI] , ECE 492 [WI] , ECE 493 [WI] credits with ECE elective credits.

2 classes or at least 6.0 credits at the 300-400 level from subject codes ECE, ECEC, ECEE, ECEL, ECEP, or ECES. Includes Special Topics in each code (T380, T480).

††

3 classes or at least 9.0 credits at the 400 level from subject codes ECE, ECEE, ECEP, or ECES. Includes Special Topics in each code (T480).

Choose three courses of 500-level or higher from: ECEC, ECEE, ECEP, ECES, ECET, ECE, AE, CHE, CIVE, CMGT, EGMT, ENGR, ENVE, ET, MATE, MEM, PROJ, PRMT, and SYSE

‡‡

Thesis Option: A minimum of two terms of laboratory-based research that leads to a publicly defended MS thesis. Students will be advised by a faculty member, and when applicable, a representative of industry or government sponsor.

Non-thesis Option: In lieu of research and thesis, students will complete 6.0 additional credits of coursework from the Mathematical Theory, Applications, or Signal Processing area.

Writing-Intensive Course Requirements

In order to graduate, all students must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid “clustering” these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog may indicate that this course can fulfill a writing-intensive requirement. For the most up-to-date list of writing-intensive courses being offered, students should check the Writing Intensive Course List at the University Writing Program. Students scheduling their courses can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term.

Sample Plan of Study

5 year, 3 coop Co-Terminal

First Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
CHEM 1013.5COOP 101 or CIVC 101*1.0CIVC 101 or COOP 101*1.0VACATION
ECE 1011.0ECE 2004.0ECE 1053.0 
ENGL 101 or 1113.0ENGR 131 or 1323.0ENGL 102 or 1123.0 
ENGR 1113.0MATH 1224.0ENGR 1133.0 
MATH 1214.0PHYS 1014.0MATH 2004.0 
UNIV E1011.0 PHYS 1024.0 
 15.5 16 18 0
Second Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
COOP EXPERIENCECOOP EXPERIENCEECE 2014.0COM 230 or 3103.0
  ECEC 2013.0ECEC 2043.0
  ENGL 103 or 1133.0ENGR 2323.0
  ENGR 2313.0PHIL 3153.0
  MATH 2914.0PHYS 2014.0
  (UG) Free Elective3.0(UG) Free Elective3.0
 0 0 20 19
Third Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
COOP EXPERIENCECOOP EXPERIENCEECE 3014.0ECE 3614.0
(GR) Signal Processing Course3.0 ECE 3703.0ECE 3713.0
  ECES 3014.0ECE 3803.0
  (UG) EE Core Elective***3.0Science Elective3.0
  (UG) General Education Elective**3.0
Any BIO, CHEM or PHYS course
  (GR) Engineering Elective§§3.0(UG) Free elective3.0
   (GR) Aligned Mathematical Theory Course3.0
 3 0 20 19
Fourth Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
COOP EXPERIENCECOOP EXPERIENCEECE 3033.0(UG) ECE Elective3.0
(GR) Applications Course3.0ECE 6103.0MATH 2213.0(UG) Free Electives6.0
  (UG) ECE Elective3.0(UG) General Education Elective**3.0
  (UG) Free Elective3.0ECE 6123.0
  ECE 6873.0(GR) Aligned Mathematical Theory Course3.0
  ECES 5213.0 
 3 3 18 18
Fifth Year
FallCreditsWinterCreditsSpringCredits 
ECE 4913.0ECE 4923.0ECE 4933.0 
(UG) ECE 400-level elective††3.0(UG) ECE 400-level elective††3.0(UG) ECE 400-level elective††3.0 
(UG) Free elective3.0(UG) Free elective3.0(UG) Free elective3.0 
(UG) General Education elective**3.0(UG) General Education elective**3.0(UG) General Education elective**3.0 
(GR) Engineering Elective3.0(GR) Thesis or alternative3.0(GR) Engineering Elective3.0 
(GR) Transformational Elective3.0(GR) Transformational Elective3.0(GR) Thesis or alternative3.0 
 18 18 18 
Total Credits 226.5
 

Note: An ECE student must have a 2.0 cumulative overall GPA and a 2.0 cumulative GPA in their ECE Professional Requirements.

*

Co-op cycles may vary. Students are assigned a co-op cycle (fall/winter, spring/summer, summer-only) based on their co-op program (4-year, 5-year) and major.

COOP 101 registration is determined by the co-op cycle assigned and may be scheduled in a different term. Select students may be eligible to take COOP 001 in place of COOP 101.

**

General Education Requirements

***

Choose one of CS 260CS 265, or ECE 350

2 classes or at least 6.0 credits at the 300-400 level from subject codes ECE, ECEC, ECEE, ECEL, ECEP, or ECES. Includes Special Topics in each code (T380, T480).

††

3 classes or at least 9.0 credits at the 400 level from subject codes ECE, ECEE, ECEP, or ECES. Includes Special Topics in each code (T480).

  • Schedule of Classes
  • All Course Descriptions
  • Co-op
  • Academic Advising
  • Admissions
  • Tuition & Fees
LEARN MORE